3.16 逆行列
定義 3.59 (逆行列) 行列 に対して
(533)
を満たす行列 が存在するとき, 行列 を行列 の逆行列(inverse matrix)と呼ぶ. の逆行列は と表記する.
問 3.60 (逆行列の性質) 逆行列をもつのは正方行列のみである. これを示せ.
(証明) を満たす行列は可換な行列である. 可換な行列は正方行列のみである.
定理 3.61 (逆行列の一意性) 行列 が逆行列をもつとき,逆行列は一意に定まる.
(証明) と が の逆行列であると仮定する. このとき , が成り立つ. これを用いて
(534)
となる.よって であり と とは一致する.
定義 3.62 (行列の正則性) 正方行列 が逆行列をもつとき, は正則(regular)であるという. 正則な行列を正則行列(regular matrix)と呼ぶ.
定理 3.63 (逆行列をもつ十分条件) 正方行列 , が または の どちらか一方だけを満たすときでも は の逆行列となる.
(証明) 証明はずっとあとに行なう.
定理 3.64 (逆行列の計算法) 行列 を簡約化して の形に変形できたとする. このとき は の逆行列 となる.
(証明) 行列 に基本変形 を繰り返し行ない 単位行列 に変換されたとする. このとき
(535)
と書ける. の左にかかっている行列をまとめて と書くと,
(536)
となる. を用いれば が成り立つ. 前述の定理より のとき は の逆行列 となる. よって行列 を求めればよい. は
(537)
と書ける. これはすなわち に行なった基本変形と同じ操作を に 対して同じ順で行なうことを意味する. これらの操作を同時に行なうには, 行列 に対して簡約化を行い の形にすればよい. この一連の操作により を得る.
例 3.65 (逆行列の計算例) 行列
(538)
を考える.この行列の逆行列を求める. 行列 に基本変形を次のように繰り返し行なう:
(一行目を 倍して三行目に加える.) (539) (一行目を 倍して二行目に加える.) (540) (二行目を 倍して一行目に加える.) (541) (三行目を一行目に加える.) (542) (三行目を二行目に加える.) (543) (二行目を 倍する.) (544) (545)
よって, の逆行列
(546)
を得る.
定理 3.66 (行列の正則性と緒性質) 正方行列 に対して次の(1)-(5) は同値である:
- (1)
- .
- (2)
- の簡約化は である.
- (3)
- 任意の に対して は一意な解をもつ.
- (4)
- は自明な解 のみをもつ.
- (5)
- は正則である.
(証明) , を示す.
を示す. は 型でフルランクであるから, 簡約化は明らかに となる.
を示す. 簡約化により となるので, 方程式は となる. よって解として一意な解 をもつ.
を示す. のとき であるから, 解として のみをもつ.
を示す. 定理 より, 同次形方程式が自明な解のみをもつ必用十分条件は である.
を示す. のときの解を それぞれ とする. このとき
(547) (548) (549)
となる. は の逆行列である. よって は正則である.を示す.
(550)
定理 3.67 (逆行列による解法) 正方行列 が正則なとき方程式 は 解 をもつ.
例 3.68 (逆行列をもたない具体例) 行列
(551)
の逆行列を考える. 例題 と同じように計算を行なう:
(一行目を 倍して三行目に加える.) (552) (一行目を 倍して二行目に加える.) (553) (二行目を 倍する.) (554) (二行目を 倍して一行目に加える.) (555) (二行目を 倍して三行目に加える.) (556) (557)
これより行列 の簡約化は
(558)
となる.よって となる. 定理 の より は正則ではない. よって は逆行列をもたない.
例 3.69 (逆行列を用いた解法の具体例) 方程式
(559)
を考える. とすると より 解が求まる. よって
(560)
を得る.
定理 3.70 (逆行列の性質) 正方行列 , が正則のとき次の関係式が成り立つ:
- (1)
- .
- (2)
- .
- (3)
- .
問 3.71 これを示せ.
(証明) (3) を示す.
(561) (562) の逆行列は . (563) (564)
平成20年2月2日