2.15 2 変数関数 と 1 変数関数の合成関数の微分
定理 2.63 (合成関数の微分) 2 変数関数 と 1 変数関数 , との 合成関数 の導関数は
となる.また,代入も含めて正確に書くと
となる.
(証明) 関数 は全微分可能であり, 関数 , は微分可能とする. このとき
が成り立つ.または,
と表される. ただし, とおく. このとき,
が成り立つ. の極限をとると, , , より, , であり,
となるので,
を得る.
例 2.64 (合成関数の微分) 関数 , , の合成関数 の導関数は,
より
となる.
例 2.65 (合成関数の微分) 関数 , , の 合成関数の導関数は,
より
となる.
例 2.66 (合成関数の微分) 関数 , , の合成関数の微分は,
より
となる.
例 2.67 (合成関数の微分) 関数 , の 合成関数 の 微分を考える. まず,, と置き換えて, を で微分する. , より
となる. を に置き換えると
を得る.
問 2.68 (合成関数の微分) 次の合成関数の導関数を求めよ.(1) , , (2) , ,
Kondo Koichi
平成18年1月18日