4.15 余因子行列と逆行列
定理 4.92 (行列式と行列の正則性) 正方行列 に対して, のとき は正則である.
(証明) 定理
(765)
であるから, とすると各辺を で割って
(766)
が成り立つ.よって は の逆行列であり, は正則である.
定理 4.93 (余因子行列と逆行列) 正方行列 に対して, のとき の逆行列は
(767)
で与えられる.
定理 4.94 (逆行列が存在するための十分条件) 正方行列 , に対して (または )が成立するとき, は の逆行列となる.
(証明) より,両辺の行列式をとると
(768)
が成り立つ. これより を得る. よって, のとき は正則であるから, 逆行列 をもつ. さらに が存在することを用いると
(769)
が成り立つ. が示された.
例 4.95 (余因子行列による逆行列の計算の具体例) のとき逆行列は
(770) (771)
である. のとき逆行列は
(772) (773)
である.
例 4.96 (余因子行列による逆行列の計算例) 行列
(774)
の逆行列を求める. 行列式は
(775)
であるから, 逆行列は
(776)
で与えられる.
例 4.97 (余因子行列による逆行列の計算例) 行列
(777)
の逆行列を求める. 小行列の行列式は
(778) (779) (780)
であり,行列式は
(781)
であるので, 逆行列は
(782) (783)
と与えられる.
平成20年2月2日