1.5 上限,下限

定義 1.13 (上限,下限)   集合 $ X\subset\mathbb{R}$ に対して
$ \forall x\in X$, $ x\le M $ をみたす最小な $ M\in\mathbb{R}$ が存在      $ \Leftrightarrow$      $ \sup X = M$
$ \forall x\in X$, $ m \le x$ をみたす最大な $ m\in\mathbb{R}$ が存在      $ \Leftrightarrow$      $ \inf X = m$
$ \sup X$$ X$上限(supremum)$ \inf X$$ X$下限(infimum)という.

1.14 (上限,下限の具体例)  

  $\displaystyle \sup\mathbb{N}=\infty,$   $\displaystyle \inf\mathbb{N}=1$    
  $\displaystyle \sup (1,2] = 2,$   $\displaystyle \inf (1,2] = 1$    
  $\displaystyle \sup \left\{\left.\,{(-1)^{n}}\,\,\right\vert\,\,{n\in\mathbb{N}}\,\right\}=1,$   $\displaystyle \inf \left\{\left.\,{(-1)^{n}}\,\,\right\vert\,\,{n\in\mathbb{N}}\,\right\}=-1$    
  $\displaystyle \sup\left\{\left.\,{\frac{1}{2^n}}\,\,\right\vert\,\,{n=0,1,2,\cdots}\,\right\} = 1,$   $\displaystyle \inf\left\{\left.\,{\frac{1}{2^n}}\,\,\right\vert\,\,{n=0,1,2,\cdots}\,\right\} = 0$    
  $\displaystyle \sup \left\{\left.\,{x^2}\,\,\right\vert\,\,{-1\le x\le 1}\,\right\}=1,$   $\displaystyle \inf \left\{\left.\,{x^2}\,\,\right\vert\,\,{-1\le x\le 1}\,\right\}=0$    
  $\displaystyle \sup \left\{\left.\,{x^2}\,\,\right\vert\,\,{-1<x<1}\,\right\}=1,$   $\displaystyle \inf \left\{\left.\,{x^2}\,\,\right\vert\,\,{-1<x<1}\,\right\}=0$    


平成21年6月1日