next up previous contents
Next: 6 ¹ÔÎó¤Î±é»»¤Ë´Ø¤¹¤ë½ïÀ­¼Á Up: 5 ¹ÔÎó¤Î±é»» Previous: 2 ¹ÔÎó¤Î¥¹¥«¥é¡¼ÇÜ   Contents

3 ¹ÔÎó¤ÎÀÑ

ÄêµÁ 2.46 (¹ÔÎó¤ÎÀÑ)   ¹ÔÎó $ A$ ¤È¹ÔÎó $ B$ ¤ÎÀѤò $ C$ ¤È¤¹¤ë¡¥ ¤³¤Î¤È¤­

$\displaystyle A\,B=C$ (244)

¤Èɽµ­¤¹¤ë¡¥ ¹ÔÎó¤ÎÀѤϷ¿¤¬

$\displaystyle A$ $\displaystyle =[a_{ij}]_{m\times n}\,,\qquad B=[b_{ij}]_{n\times r}\,,\qquad C=[c_{ij}]_{m\times r}\,\qquad$ (245)

¤Î¤È¤­ÄêµÁ¤µ¤ì¤ë¡¥ ³ÆÀ®Ê¬¤Ï

  $\displaystyle AB= \begin{bmatrix}\!*\! & \!*\! & \!\cdots\! & \!*\! \\ \!\vdots...
...! \\ \!*\! & \!*\! & \!\cdots\! & \!*\! & \!\cdots\! & \!*\! \end{bmatrix}=C\,,$ (246)
  $\displaystyle \qquad c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+a_{i3}b_{3j}+\cdots+ a_{in}b_{nj}= \sum_{k=1}^{n}a_{ik}b_{kj}$ (247)

¤ÈÄêµÁ¤µ¤ì¤ë¡¥

Îã 2.47 (¹ÔÎó¤ÎÀѤη׻»Îã)  

  $\displaystyle \underset{\text{\small$2\times3$·¿}}{ \begin{bmatrix}2 & 1 & -3 \...
...imes3$·¿}}{ \begin{bmatrix}3 & 1 & 0 \\ 2 & 0 & -1 \\ -1 & 4 & 1 \end{bmatrix}}$ (248)
  $\displaystyle = \begin{bmatrix}2\times 3+1\times 2+(-3)\times(-1) & 2\times 1+1...
...mes 1+(-5)\times 0+2\times 4 & 1\times 0+(-5)\times(-1)+2\times 1 \end{bmatrix}$ (249)
  $\displaystyle = \underset{\text{\small$2\times3$·¿}}{ \begin{bmatrix}11 & -10 & -4 \\ -9 & 9 & 7 \end{bmatrix}}\,.$ (250)

Îã 2.48 (¹ÔÎó¤ÎÀѤη׻»Îã)  

$\displaystyle A$ $\displaystyle = \begin{bmatrix}1 \\ -1 \\ 2 \end{bmatrix}\,, \qquad B= \begin{bmatrix}1 & 3 & 2 \end{bmatrix}$ (251)

¤È¤ª¤¯¡¥

$\displaystyle AB$ $\displaystyle = \underset{\text{\small$3\times1$·¿}}{ \begin{bmatrix}1 \\ -1 \\...
...3$·¿}}{ \begin{bmatrix}1 & 3 & 2 \\ -1 & -3 & -2 \\ 2 & 6 & 4 \end{bmatrix}}\,.$ (252)
$\displaystyle BA=$ $\displaystyle \underset{\text{\small$1\times3$·¿}}{ \begin{bmatrix}1 & 3 & 2 \e...
...}}{ \begin{bmatrix}2 \end{bmatrix}}\,. \qquad \text{¢«¥¹¥«¥é¡¼¤Ç¤Ï¤Ê¤¤¤Î¤ÇÃí°Õ}$ (253)

$ AB\neq BA$ ¤Ç¤¢¤ë¤³¤È¤ËÃí°Õ¡¥

Îã 2.49 (¹ÔÎó¤ÎÀѤζñÂÎÎã)  

  $\displaystyle \underset{\text{\small$3\times3$\ ·¿}}{ \begin{bmatrix}1 & 4 & 5 ...
...rset{\text{\small$3\times1$\ ·¿}}{ \begin{bmatrix}-1 \\ -2 \\ -3 \end{bmatrix}}$ (254)
  $\displaystyle \qquad \quad\Leftrightarrow\quad \underset{\text{\small ϢΩ°ì¼¡Ê...
...in{array}{l} x+4y+5z = -1 \\ 9x+2y+6z = -2 \\ 8x+7y+3z = -3 \end{array}\right.}$ (255)


next up previous contents
Next: 6 ¹ÔÎó¤Î±é»»¤Ë´Ø¤¹¤ë½ïÀ­¼Á Up: 5 ¹ÔÎó¤Î±é»» Previous: 2 ¹ÔÎó¤Î¥¹¥«¥é¡¼ÇÜ   Contents

Kondo Koichi
Created at 2004/11/26