next up previous contents
Next: 13 級の関数 Up: 3 微分法 Previous: 11 逆双曲線関数の微分   Contents

12 高階導関数

定義 3.32 (高階導関数)   関数 $ f'(x)$ が微分可能のとき,$ f'(x)$ の導関数

$\displaystyle f''(x)$ $\displaystyle =\lim_{h\to0}\frac{f'(x+h)-f'(x)}{h}$ (313)

2 階導関数(second order derivative)という. このとき $ f(x)$2 回微分可能(two times differentiable)と呼ぶ. 同様に $ f(x)$$ n$ 回繰り返し微分した関数を $ n$ 階導関数($ n$-th order derivative)といい, $ f^{(n)}(x)$ と書き表わす. 関数 $ f^{(n)}(x)$

$\displaystyle f^{(n)}(x)$ $\displaystyle = \lim_{h\to0} \frac{f^{(n-1)}(x+h)-f^{(n-1)}(x)}{h}\qquad (n=1,2,3,\cdots)$ (314)

と再帰的に定義する. ただし $ f^{(0)}(x)=f(x)$ とする. $ f^{(n)}(x)$ が存在するとき $ f(x)$$ n$ 回微分可能($ n$ times differentiable)という.

例 3.33 (高階導関数の計算例)   $ y=x^{\alpha}$ の高階導関数を求める. $ \alpha$ が自然数ではないとき,

$\displaystyle y'$ $\displaystyle =\alpha\,x^{\alpha-1}\,,$ (315)
$\displaystyle y''&=\alpha(\alpha-1)\,x^{\alpha-2}\,,$ (316)
$\displaystyle y'''$ $\displaystyle =\alpha(\alpha-1)(\alpha-2)\,x^{\alpha-3}\,,$ (317)
  $\displaystyle \cdots$    
$\displaystyle y^{(n)}$ $\displaystyle =\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)x^{\alpha-n}\,,$ (318)
$\displaystyle y^{(n+1)}$ $\displaystyle =\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n)x^{\alpha-n-1}\,$ (319)
  $\displaystyle \cdots$    

を得る. $ \alpha$ が自然数 $ \alpha=n$ のとき,

$\displaystyle y$ $\displaystyle =x^{\alpha}\,,$ (320)
$\displaystyle y'$ $\displaystyle =\alpha\,x^{\alpha-1}\,,$ (321)
$\displaystyle y''&=\alpha(\alpha-1)\,x^{\alpha-2}\,,$ (322)
$\displaystyle y'''$ $\displaystyle =\alpha(\alpha-1)(\alpha-2)\,x^{\alpha-3}\,,$ (323)
  $\displaystyle \cdots$    
$\displaystyle y^{(\alpha-1)}$ $\displaystyle =\alpha(\alpha-1)(\alpha-2)\cdots 2\cdot\,x\,,$ (324)
$\displaystyle y^{(\alpha)}$ $\displaystyle =\alpha(\alpha-1)(\alpha-2)\cdots 2\cdot 1\,,$ (325)
$\displaystyle y^{(\alpha+1)}$ $\displaystyle =0\,,$ (326)
$\displaystyle y^{(\alpha+2)}$ $\displaystyle =0\,$ (327)
  $\displaystyle \cdots$    

を得る.

例 3.34 (高階導関数の計算例)   $ y=e^{a\,x}$ の高階導関数を求める. 合成関数の微分を繰り返して

$\displaystyle y$ $\displaystyle =e^{a\,x}\,,$ (328)
$\displaystyle y'$ $\displaystyle =a\,e^{a\,x}\,,$ (329)
$\displaystyle y''&=a^2\,e^{a\,x}\,,$ (330)
$\displaystyle y'''$ $\displaystyle =a^3\,e^{a\,x}\,,$ (331)
  $\displaystyle \cdots$    
$\displaystyle y^{(n)}$ $\displaystyle =a^n\,e^{a\,x}\,$ (332)

を得る.

例 3.35 (高階導関数の計算例)  

$\displaystyle y$ $\displaystyle =\sin x\,,$ (333)
$\displaystyle y'$ $\displaystyle =\cos x\,,$ (334)
$\displaystyle y''&=-\sin x\,,$ (335)
$\displaystyle y'''$ $\displaystyle =-\cos x\,,$ (336)
$\displaystyle y^{(4)}$ $\displaystyle =\sin x\,,$ (337)
  $\displaystyle \cdots$ (338)
$\displaystyle y^{(n)}$ $\displaystyle = \left\{ \begin{array}{ll} \sin x & (n=4k) \\ \cos x & (n=4k+1) \\ -\sin x & (n=4k+2) \\ -\cos x & (n=4k+3) \end{array}\right.$ (339)
$\displaystyle y^{(n)}$ $\displaystyle = \sin\left(x+\frac{n\pi}{2}\right)\,.$ (340)

問 3.36 (高階導関数の例)   $ y=\cos x$, $ y=\sinh x$, $ y=\cosh x$$ y^{(n)}$ を求めよ.

例 3.37 (高階導関数の計算例)  

$\displaystyle y$ $\displaystyle =\sqrt{1-x}\,,$ (341)
$\displaystyle y'$ $\displaystyle = -\frac{1}{2}\frac{1}{\sqrt{1-x}}\,,$ (342)
$\displaystyle y''&= -\frac{1}{2\cdot2}\frac{1}{\sqrt{(1-x)^3}}\,,$ (343)
$\displaystyle y'''$ $\displaystyle = -\frac{1\cdot3}{2\cdot2\cdot2}\frac{1}{\sqrt{(1-x)^5}}\,,$ (344)
$\displaystyle y^{(4)}$ $\displaystyle = -\frac{1\cdot3\cdot5}{2\cdot2\cdot2\cdot2}\frac{1}{\sqrt{(1-x)^7}}\,,$ (345)
  $\displaystyle \vdots$ (346)
$\displaystyle y^{(n)}$ $\displaystyle = -\frac{(2n-3)!!}{2^n} \frac{1}{\sqrt{(1-x)^{2n-1}}}$ (347)

ただし

$\displaystyle (2n+1)!!$ $\displaystyle =(2n+1)(2n-1)(2n-3)\cdots7\cdot5\cdot3\cdot1\,,$ (348)
$\displaystyle (2n)!!$ $\displaystyle =(2n)(2n-2)(2n-4)\cdots8\cdot6\cdot4\cdot2\,,$ (349)
$\displaystyle 0!!$ $\displaystyle =(-1)!!=1$ (350)

と定義する.

問 3.38   参考書(p.52)問題 3-3.


next up previous contents
Next: 13 級の関数 Up: 3 微分法 Previous: 11 逆双曲線関数の微分   Contents

Kondo Koichi
Created at 2004/08/14