4.16 交項級数
定義 4.61 (交項級数) 級数
(530)
を交項級数(alternative term series)と呼ぶ.
定理 4.62 (交項級数の収束定理) 交項級数 は 次の条件を満たすとき収束する:
- (i)
- .
- (ii)
- .
(証明) が偶数のときの有限部分和は
(531) (532)
と書ける. となるので, 数列 は正項級数でかつ単調増加となる. さらには は
(533)
とも書ける. , であるから, となる.よって は
(534)
をみたす. は有界な単調増加数列である. よって は極限 が存在する. 次に が奇数にる場合を考える. の極限は
(535)
と得られる.以上で証明終了.
例 4.63 (交項級数の収束定理の具体例) 級数 は 収束する. なぜなら であり, であるから, 定理より級数は収束する.
例 4.64 (交項級数の収束定理の具体例) 級数 は 収束する. なぜなら であり, であるから, 定理より級数は収束する.
Kondo Koichi
平成17年8月31日